Iterated Logarithm Laws for Asymmetric Random Variables Barely with or Without Finite Mean

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-normalized laws of the iterated logarithm

Stronger versions of laws of the iterated logarithm for self-normalized sums of i.i.d. random variables are proved.

متن کامل

Strong Laws for Weighted Sums of Negative Dependent Random Variables

In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.

متن کامل

ON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES

In this paper, we extend and generalize some recent results on the strong laws of large numbers (SLLN) for pairwise independent random variables [3]. No assumption is made concerning the existence of independence among the random variables (henceforth r.v.’s). Also Chandra’s result on Cesàro uniformly integrable r.v.’s is extended.

متن کامل

Laws of the Iterated Logarithm for Triple Intersections of Three Dimensional Random Walks

Let X = {Xn, n ≥ 1}, X ′ = {X ′ n, n ≥ 1} and X ′′ = {X ′′ n, n ≥ 1} be three independent copies of a symmetric random walk in Z3 with E(|X1| log+ |X1|) < ∞. In this paper we study the asymptotics of In, the number of triple intersections up to step n of the paths of X , X ′ and X ′′ as n→∞. Our main result is lim sup n→∞ In log(n) log3(n) = 1 π|Q| a.s. where Q denotes the covariance matrix of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1977

ISSN: 0091-1798

DOI: 10.1214/aop/1176995656